quasi-uniformly - définition. Qu'est-ce que quasi-uniformly
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est quasi-uniformly - définition

SEQUENCE FUNCTION
Uniformly cauchy; Uniformly Cauchy

Uniformly convex space         
REFLEXIVE BANACH SPACE SUCH THAT THE CENTER OF A LINE SEGMENT INSIDE THE UNIT BALL MUST LIE DEEP INSIDE THE UNIT BALL UNLESS THE SEGMENT IS SHORT
Uniformly convex Banach space; Uniformly convex banach space; Uniform Convexity; Uniform convexity; Uniformly convex
In mathematics, uniformly convex spaces (or uniformly rotund spaces) are common examples of reflexive Banach spaces. The concept of uniform convexity was first introduced by James A.
Quasi-market         
TYPE OF EXCHANGE SYSTEM
Quasi market
Quasi-markets, are markets which can be supervised and organisationally designed that are intended to create greater desire and more efficiency in comparison to conventional delivery systems, while supporting more accessibility, stability and impartiality than traditional markets. Quasi-markets also can be referred to as internal or planned markets.
Quasi-constitutionality         
CANADIAN TERM FOR A LAW THAT OVERRIDES REGULAR LAWS BUT IS NOT PART OF THE CONSTITUTION
Quasi-constitutionality (Canada); Quasi-constitutional; Quasi-consitutionality
In Canada, the term quasi-constitutional is used for laws which remain paramount even when subsequent statutes, which contradict them, are enacted by the same legislature. This is the reverse of the normal practice, under which newer laws trump any contradictory provisions in any older statute.

Wikipédia

Uniformly Cauchy sequence

In mathematics, a sequence of functions { f n } {\displaystyle \{f_{n}\}} from a set S to a metric space M is said to be uniformly Cauchy if:

  • For all ε > 0 {\displaystyle \varepsilon >0} , there exists N > 0 {\displaystyle N>0} such that for all x S {\displaystyle x\in S} : d ( f n ( x ) , f m ( x ) ) < ε {\displaystyle d(f_{n}(x),f_{m}(x))<\varepsilon } whenever m , n > N {\displaystyle m,n>N} .

Another way of saying this is that d u ( f n , f m ) 0 {\displaystyle d_{u}(f_{n},f_{m})\to 0} as m , n {\displaystyle m,n\to \infty } , where the uniform distance d u {\displaystyle d_{u}} between two functions is defined by

d u ( f , g ) := sup x S d ( f ( x ) , g ( x ) ) . {\displaystyle d_{u}(f,g):=\sup _{x\in S}d(f(x),g(x)).}